
   
Abstract-- This paper examines the use of wavelets for the 
detection of QRS complex in ECG. Wavelets provide 
temporal and spectral information simultaneously and offer 
flexibility with a choice of wavelet functions with different 
properties. This research has examined wavelet functions 
with different properties to determine the effects of wavelet 
properties such as linearity and time/ frequency localization 
on the accuracy of QRS detection. The sum of false 
negatives and false positives  (total error in detection) is the 
criterion for determining the efficacy of the wavelet 
function. The paper reports a significant reduction in error 
in detection of QRS complexes with mean error reduced to 
0.75%. This  is achieved with the use of Cubic Spline 
wavelet- a biorthogonal third order wavelet. This paper 
reports that the use of wavelets reduces the error in 
detection of QRS complexes and that wavelet functions that 
support symmetry and compactness provide better results. 
Index Terms--: ECG, QRS detection, Wavelet 

I. INTRODUCTION  

Accurate detection of QRS is of vital importance in number 
of clinical instruments. But even though the QRS complex 
is the dominant feature of the ECG signal and detection of 
this can be done rather easily by the trained eye of a 
Cardiologist, the problem of automation of this process is 
not simple and is complicated due to the fact that 
morphologies of many normal as well as abnormal QRS 
complexes differ widely. The presence of noise from many 
sources make this problem more complex. Further, other 
sections of ECG (P and T waves) can hinder the detection 
of QRS complexes and often result in error in classification. 
Research has determined a number of techniques to detect 
the QRS complex [3,4,5] and these techniques are used in 
commercially available equipment.  

In general, the commercially used equipment that 
detect QRS complex require bandpass filtering and 
temporal filtering (time windowing) of the signal. But the 
selection of the bandwidth of the filter and the duration 
(width) of the sliding window is not a simple decision [2,7], 
the choice of bandwidth is a tradeoff between noise and 
high frequency details while duration of the sliding window 
is a tradeoff between false and missed detections. Further, 
the bandwidth of the signal and duration of the QRS 
complex are dynamic varying and fixed values of either are 
not suitable for QRS complex detection. 
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Researchers have attempted to use Wavelets for 
QRS detection [1,2,8,9,10] to overcome some of these 
issues. Wavelet analysis offer flexibility and adaptability 
and promises to overcome the limitations mentioned [2]. 
But along with the flexibility comes the price of 
determining the appropriate choice of the function and level 
of decomposition for this application. This paper reports 
efforts to determine the most suitable wavelets for the 
purpose of QRS detection.  

II. A BRIEF INTRODUCTION TO WAVELETS:  

A wavelet (time limited wave) is chosen as the “mother 
wavelet”. This mother wavelet (ideally) is limited in time 
and frequency. Scaling and translation of the “mother 
wavelet” gives a family of basis functions called “daughter 
wavelets”.  

The Wavelet Transform of a time signal at any 
scale is the convolution of the signal and a time -scaled 
daughter wavelet. Scaling and translating the mother 
wavelet is the mechanism by which the transform adapts to 
the spectral and temporal changes in the signal being 
analysed. 

Wavelets are generally orthogonal basis functions, 
though biorthogonal wavelet functions are now also being 
used. Orthogonality is considered an important property for 
the purpose of conserving the energy of the signal, an 
important property for reconstruction of the signal from the 
coefficients. Figure 1 shows the wavelet decomposition- 

reconstruction [11] of a signal. The signal is decomposed 
by the scaling and wavelet filter banks (coefficients h(n) 
and g(n) ) and down-sampled to get the trend and detail. 
The process is reversed to reconstruct the signal. The 
wavelet and scaling function coefficients are related by the 
equation 1. 

)1()1()( 1 nhng n −−= − ………..(1) 
The above relationship is for an orthogonal 

wavelet and scaling function. This is the simplest method 
and ensures conservation. But the orthogonal wavelets are 
unable to provide symmetry in the time domain and this 
results in an introduction of non-linear phase shift during 
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analysis. This is a problem only if the temporal shape of the 
signal is important- as in the case of the ECG signal. 

Biorthogonal wavelets have added complexity for 
the reconstruction of the signal due to the extra computation 
required for dual function but these wavelets offer temporal 
symmetry [11]. This prevents non-linear phase shift of the 
transformed signal. In the current problem, the shape of the 
signal in time domain is important while reconstruction of 
the signal is not required and this makes the choice of 
biorthogonal wavelets easier. The biorthogonal wavelet 
transform can also be represented by filters but with a 
difference as shown in figure 2 and equation 2. Here the 
decomposition/  reconstruction impulse repose are not the 
same and are related as described by equation 2. 
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The other important property of wavelets is their 
ability to localise temporal and spectral information- time 
and frequency localization. Time localization is generally 
inversely related to frequency localization and the 
smoothness of the wavelet function. A signal that has 
events that are separated by narrow frequency margins 
require frequency localization while signal where transitory 

events are important require time localization.  

III. CHARACTERISTICS OF THE ECG 

Figure 3 shows a typical electrocardiogram of a normal 
heartbeat recorded by lead II. Even though the ‘standard’ 
ECG is rather well defined, but ECG recordings of different 
individuals or an individual in different circumstances can 
differ significantly. Further, ECG recordings can have a 
number of other signals recorded alongside. This can be 
appreciated better in the frequency domain (5,6,7). The 
variation of the signal itself and presence of artifacts makes 

the detection of the QRS difficult.  

IV. WAVELET TRANSFORM BASED QRS DETECTION 

The ECG is first segmented into Lw seconds and the DWT 
of each signal segment is computed [2]. The length of the 
segment reflects the tradeoff between the accuracy and 
computational time-consumption of the algorithm. 
Subsequent segments are obtained by overlapping the 
windows by 75%.  

The algorithm locates the local maxima of the 
absolute value of the DWT that exceeds the given threshold 
for each scale. The threshold is chosen manually to 
minimise errors. This study determined empirically that the 
choice of 65%, 50% and 40% of the maximum value of the 
DWT in each windowed segment of data at scales i = 1, 2 
and 3 respectively gave the best results. If the detected peak 
after thresholding appears in atleast two scales with a 
misalignment of less than ±0.1s (or ±25 samples), the 
algorithm considered that as a QRS complex. A peak 
occurring within the refractory period (0.2s) is disregarded. 
This reduces false positives. The location of the QRS 
complex detected is marked on the file. 

V. WAVELET SELECTION 

To determine the choice of wavelet, properties of the QRS 
were examined. There are three properties of the ECG that 
are useful for detection of the QRS complex; QRS has the 
highest slope; the shape of the signal is important; event is 
localised in time.  

The shape of the signal is maintained if the phase 
shift is linear. Thus one requirement of the wavelet is that it 
should have a symmetrical function. Such wavelets are non-
orthogonal. 

Time localisation is important because the ECG 
events are transient.  

Spline wavelets have properties satisfying the two 
requirements discussed above. They are first derivatives of 
smoothing functions and represent symmetrical filters. The 
family of Spline wavelets has its general Fourier transform 
as follows: 
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where n = 0, 1, 2, 3…, corresponding to linear, quadratic, 
cubic, and higher-order spline wavelets.  

The higher order of the Spline wavelet results in 
the sharper frequency response of the equivalent FIR filter. 
This is always desirable in wavelet transform. But the FIR 
equivalent filter of the higher order Spine wavelet is  longer 
coefficient series, leading to more computational time -
consumption. Therefore the cubic Spline wavelet is 
assumed to have a high enough order for this application. 
Figures 4 and 5 are examples of different wavelets and 
illustrate the quadratic and cubic Spline wavelet with their 
scaling functions respectively. The reader may refer to [11] 
for more details. 
 
 These functions can result in non-perfect 
reconstruction due to their not being orthogonal. In this 
application the reconstruction procedure is not taken 
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required. Therefore, cubic and quadratic Spline wavelet 
maybe suitable for this application 

The Haar wavelet on the other hand is compact in 
time and provides localisation in time and can be 
considered to be on the other extreme. It also provides ease 
in computation but does not provide the localisation in 
frequency. The dB3 wavelet is a wavelet function that 
includes partial properties for all the ECG signal 
requirements. This paper reports a comparison of these 
wavelets.  

A. Data 
The MIT-BIH database [13] was used for the analysis. The 
entire database consists tens of hours of ECG signal and has 
been distributed in CD-ROM format. 

Some records are relatively clean and 
uncomplicated while others contain many ventricular 
ectopic beats and considerable level of noise. All records 
are dual channel ECG signals. Cardiologists have manually 
identified the time of occurrence and classified the type of 
QRS complex anomaly for each record making it suitable 
for this study.  

B. Methodology for QRS Complex Detection 
This paper reports on the analysis of the first four-minute 
signals of the 25 records in the data base. This amounted to 
a total of 100 minutes of data and more than eight thousand 
QRS complexes. Records were chosen with the intention of 
representing wide ranges of complexity and noise level. 

Four different wavelets- Haar, Daubechies 3, 
Quadratic Spline and Cubic Spline were used. The QRS 
complexes detected using the wavelets were compared with 
the annotation file accompanying each signal file to 
determine the errors. The percentage of error (error rate = 

(FP+FN)/total number of beats) was taken as the criterion 
for comparing the results (FP denotes the number of false 
positives and FN denotes the number of false negatives). 

VI. VII. RESULTS AND ANALYSIS 

The overall technique (all the wavelet functions) was 
successful for 24 records out of 25. The one record – 
number 207-where the technique failed was where there 
was an occurrence of atrial flutter and the QRS complex did 
not have a high slope.  

Figure 6 is a sample of the analysis.. The top plot 
presents a 2 second signal segment (500 samples). The 
three subsequent plots show the DWT computed using 
Cubic Spline wavelet at the scales a=21, 22 and 23 
respectively. The marks indicate where the local maxima 
exceed the threshold. At scale a=21, six peaks exceed the 
threshold, three at scale a=22 and three at scale a=23. The 
algorithm determine QRS occurrences if there are two 
thresholded maxima at two sequential scales In this case, 
the first QRS complex is identified by the agreement 
between the second maxima at scale a=21 and the first one 
at scale a=22; the second QRS complex is identified by the 
agreement between the second maxima at scale a=22 and 
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Figure 4: Quadratic Spline 
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Figure 5 Cubic Spline  
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the second one at scale a=23. Similarly, the third QRS is 
recognized by the last maxima at scales a=21 and a=22.  

Table 1 shows the result of the experiment. It 
provides a comparison of the use of the different wavelets 
for detection of the QRS complex.  

 (LOCATION FOR TABLE 1) 

VII. DISCUSSIONS 

The results clearly demonstrate that the error in detection of 
the QRS complexes by this  technique is very small. The 
mean error is down to 0.75%, a strong justification for the 
use of wavelets for QRS complex detection. 

From the results, it can be observed that all the 
wavelets have very similar results for 90% of the ECG 
recordings (22 of 24 records). But for the balance 10%, 
Overall results demonstrate that the use of Cubic spline 
gives the least error while the use of Haar and quadratic 
Spline give highest error rates. It can also be observed that 
both, Haar and Cubic Spline give the maximum zero error 
for a record (six each).  

Based on the results, it can be stated that Cubic 
Spline is more suitable for this application because it 
reduces the probability of error in the detection of the QRS 
complex. Thus it can be concluded that a wavelet with 
symmetrical function of high order is suitable for QRS 
detection. 
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Figure 6:QRS Complex Localisation 
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  Cubic B-spline Quadratic B- Db3 Haar 

Rec 
No. 

Total 
QRS 

FP FN TF Error 
Rate 

FP FN TF Error 
Rate 

FP FN TF Error 
Rate 

FP FN TF Error 
Rate 

100 297 0 0 0 0.00 0 1 1 0.34 0 0 1 0.34 0 0 0 0.00

101 279 2 0 2 0.72 2 1 3 1.08 2 3 5 1.79 2 1 3 1.08

102 294 0 0 0 0.00 0 0 0 0.00 0 2 2 0.68 0 0 0 0.00

103 282 0 0 0 0.00 0 0 0 0.00 0 0 0 0.00 0 0 0 0.00

104 297 10 1 11 3.70 18 1 19 6.40 17 4 21 7.07 29 1 30 10.10

105 334 0 0 0 0.00 0 0 0 0.00 0 1 1 0.30 0 0 0 0.00

106 269 0 2 2 0.74 0 18 18 6.69 0 8 8 2.97 0 17 17 6.32

107 283 0 0 0 0.00 0 1 1 0.35 0 1 1 0.35 0 0 0 0.00

118 290 0 0 0 0.00 0 0 0 0.00 0 0 0 0.00 0 0 0 0.00

119 261 0 1 1 0.38 0 8 8 3.07 0 4 4 1.53 0 9 9 3.45

200 339 2 8 10 2.95 4 4 8 2.36 3 1 4 1.18 7 1 8 2.36

201 356 0 1 1 0.28 0 2 2 0.56 0 0 0 0.00 0 3 3 0.84

202 212 0 0 0 0.00 0 0 0 0.00 0 1 1 0.47 0 0 0 0.00

203 402 2 12 14 3.48 3 8 11 2.74 2 7 9 2.24 5 6 11 2.74

205 359 0 0 0 0.00 0 0 0 0.00 0 0 0 0.00 0 0 0 0.00

208 414 0 2 2 0.48 0 10 10 24.15 0 67 67 16.18 0 10 10 26.09

209 379 0 2 2 0.53 0 0 0 0.00 0 1 1 0.26 0 0 0 0.00

210 357 0 8 8 2.24 4 6 10 2.80 0 7 7 1.96 4 6 10 2.80

212 369 0 0 0 0.00 0 1 1 0.27 0 0 0 0.00 0 0 0 0.00

213 441 0 1 1 0.23 0 7 7 1.59 0 7 7 1.59 0 7 7 1.59

214 309 1 2 3 0.97 2 3 5 1.62 2 2 4 1.29 2 4 6 1.94

215 455 1 4 5 1.10 1 4 5 1.10 1 2 3 0.66 1 4 4 0.88

217 290 0 0 0 0.00 0 0 0 0.00 0 0 0 0.00 0 0 0 0.00

219 441 0 1 1 0.23 0 2 2 0.45 0 2 2 0.45 0 3 3 0.68

Average Error Rate 0.75    2.32    1.72    2.54
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